skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Popovic, Filip_G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Microfluidic reactors with in situ spectroscopy have enabled many new directions of research over the last two decades. The miniature nature of these systems enables several key advantages in heterogeneous catalysis, which includes the reaction surface or interface accessible to spectroscopic equipment making the discovery of new catalytic materials possible. Devices fabricated with materials that are transparent to electromagnetic radiation enable in situ and in operando spectroscopy such as Raman, UV-Vis, and IR directly at the point of the reaction, and thus high fidelity, transient information on the reaction chemistry is available. Innovative designs with NMR, electrochemical impedance spectroscopy, x-ray techniques, or terahertz imaging have also advanced the field of heterogeneous catalysis. These methods have been successfully engineered to make major breakthroughs in the design of catalytic materials for important classes of chemical reactions. In this review, the authors provide an overview of recent advances in the design of microreactors with in situ spectroscopy for the study of heterogeneous catalysis to raise awareness among the vacuum science community on techniques, tools, existing challenges, and emerging trends and opportunities. 
    more » « less